Positive feedback between Golgi membranes, microtubules and ER exit sites directs de novo biogenesis of the Golgi.
نویسندگان
چکیده
The Golgi complex is the central organelle of the secretory pathway. It undergoes dynamic changes during the cell cycle, but how it acquires and maintains its complex structure is unclear. To address this question, we have used laser nanosurgery to deplete BSC1 cells of the Golgi complex and have monitored its biogenesis by quantitative time-lapse microscopy and correlative electron microscopy. After Golgi depletion, endoplasmic reticulum (ER) export is inhibited and the number of ER exit sites (ERES) is reduced and does not increase for several hours. Occasional fusion of small post-ER carriers to form the first larger structures triggers a rapid and drastic growth of Golgi precursors, due to the capacity of these structures to attract more carriers by microtubule nucleation and to stimulate ERES biogenesis. Increasing the chances of post-ER carrier fusion close to ERES by depolymerizing microtubules results in the acceleration of Golgi and ERES biogenesis. Taken together, on the basis of our results, we propose a self-organizing principle of the early secretory pathway that integrates Golgi biogenesis, ERES biogenesis and the organization of the microtubule network by positive-feedback loops.
منابع مشابه
Biogenesis of the plant Golgi apparatus.
It has long been assumed that the individual cisternal stacks that comprise the plant Golgi apparatus multiply by some kind of fission process. However, more recently, it has been demonstrated that the Golgi apparatus can be experimentally disassembled and the reformation process from the ER (endoplasmic reticulum) monitored sequentially using confocal fluorescence and electron microscopy. Some...
متن کاملCOPII–Golgi protein interactions regulate COPII coat assembly and Golgi size
Under experimental conditions, the Golgi apparatus can undergo de novo biogenesis from the endoplasmic reticulum (ER), involving a rapid phase of growth followed by a return to steady state, but the mechanisms that control growth are unknown. Quantification of coat protein complex (COP) II assembly revealed a dramatic up-regulation at exit sites driven by increased levels of Golgi proteins in t...
متن کاملGolgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites.
Microtubule disruption has dramatic effects on the normal centrosomal localization of the Golgi complex, with Golgi elements remaining as competent functional units but undergoing a reversible "fragmentation" and dispersal throughout the cytoplasm. In this study we have analyzed this process using digital fluorescence image processing microscopy combined with biochemical and ultrastructural app...
متن کاملRegulation of ER-Golgi Transport Dynamics by GTPases in Budding Yeast
A large number of proteins are synthesized de novo in the endoplasmic reticulum (ER). They are transported through the Golgi apparatus and then delivered to their proper destinations. The ER and the Golgi play a central role in protein processing and sorting and show dynamic features in their forms. Ras super family small GTPases mediate the protein transport through and between these organelle...
متن کاملCapacity of the golgi apparatus for biogenesis from the endoplasmic reticulum.
It is unclear whether the mammalian Golgi apparatus can form de novo from the ER or whether it requires a preassembled Golgi matrix. As a test, we assayed Golgi reassembly after forced redistribution of Golgi matrix proteins into the ER. Two conditions were used. In one, ER redistribution was achieved using a combination of brefeldin A (BFA) to cause Golgi collapse and H89 to block ER export. U...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 127 Pt 21 شماره
صفحات -
تاریخ انتشار 2014